INSPIRE application schemas COMPLEXITY

Agnieszka Chojka

University of Warmia and Mazury in Olsztyn

Geospatial World Forum, 25-29 May 2015, Lisbon Congress Center, Portugal

Application schemas

- Integral part of INSPIRE data specifications
 - UML application schemas
 - GML application schemas

define coherent and homogenous database structures

- worked out according to ISO 19100 series of International Standards in the geographic information domain
- allow to ensure the interoperability of spatial data sets

some of them are very complex and interdependent

Interoperability in danger

incorrect or too complex data structures

- have direct influence on the ability to generate GML data sets with concrete data (objects)
- can cause various problems and anomalies
 - at the data production stage
 - during processing and operating GML data in GIS environments

solution

- measure application schemas complexity
 - propose their optimization and simplification
 - improve their quality and databases based on them

Why it's so important?

- application schema
 - basis of successful data interchange
 - conceptual schema for data required by one or more applications
 - formal description of a conceptual model in specified conceptual schema language
 - model that defines concepts of a universe of discourse (application domain)
 - simplification of relevant aspects of situation or object in the real world

[prCEN/TR 15449:2006; ISO 19118:2005]

Complexity measures

- computer science
 - software metric
 - measure of some property of a piece of software or its specifications
 - structural complexity measure
 - software quality estimation (final product)
 - complexity monitoring of all software components
 - e.g. system information model in the form of UML class diagram

UML complexity

- metrics for UML class diagram structural complexity
 - size metrics
 - structural complexity metrics

- NC (number of classes)
- NA (number of attributes)
- NM (number of methods)

UML complexity

- structural complexity metrics
 - NAssoc (number of associations)
 - NAgg (number of aggregations)
 - NDep (number of dependencies)
 - NGen (number of generalisations)
 - **NGenH** (number of generalization hierarchies)
 - AscNoRole (associations without role)
 - LoneClass (lonely classes)

- XML-agnostic
- XSD-agnostic
- XSD-aware

XML-agnostic

do not consider any XML-related information

- **KB** (file size in kilobytes)
- LOC (lines of code)

XSD-agnostic

 do not consider any information related with XML Schema, but use XML-related information

- #NODE (number of all XML nodes (attributes and elements))
- #ANN (number of all XML nodes for annotation)

XSD-aware

consider metrics concerned with schema information

- #Elg (number of global element declarations)
- #CT_g (number of global complex-type definitions)
- #ST_g (number of global simple-type definitions)
- #MG_g (number of global model-group definitions)
- #AG_g (number of global attribute-group declarations)
- #AT_g (number of global attribute declarations)
- #GLOBAL (sum of all of above)

$- C(XSD) = C(V_g) + C(G_g) + C(T_g)$

- considers internal structure of XML schemas (not only counts schema components or features)
- pays special attention to the use of recursive structures (as a source of complexity to schema users)
 - C(V_g) total complexity values of all global elements and attributes that can be included/imported from external XSDs or can be declared/defined in the current XSD
 - C(G_g) total complexity values of unreferenced global elements and attributes group that can be declared/defined in the current XSD
 - C(T_g) total complexity values of unreferenced global complex and user-defined/built-in simple type definitions/declarations of XML Schema document

Software tools

You can't control what you can't measure (DeMarco)

examples

- SDMetrics (UML)
- UML Metrics Producer (UML)
- Castor (XML Schema)
- GraphViz (XML Schema)
- ... G/S
 - graphs
 - network analysis

Complexity analysis

assumptions

- simple application schemas selected
 - easy to prove that sth complex is really complex
- 3.0 version of application schemas considered
- "foreign" classes not included

- chosen complexity metrics
- "manual" analysis

UML complexity analysis

INSPIRE UML application schema	UML class diagram metrics					
	NC	NA	NAssoc	NAgg	NGen	
Addresses	20	44	8	1	4	
Administrative Units	8	30	4	1	0	
Bio-geographical Regions	8	7	0	0	4	
Cadastral Parcels	5	38	4	0	0	
Geographical Names	9	23	0	0	0	
Natural Risk Zones	22	52	5	0	12	
Population Distribution	15	24	4	2	4	
Protected Sites Simple	13	11	0	0	7	
Species Distribution	20	30	2	1	0	

GML complexity analysis

INSPIRE GML application schema	XML Schema metrics					
	КВ	LOC	NODE	СТg	STg	
Addresses	61,7	1039	86	26	0	
Administrative Units	24,8	501	31	8	2	
Bio-geographical Regions	5,46	129	10	2	0	
Cadastral Parcels	31,2	661	44	8	0	
Geographical Names	23,4	470	31	8	0	
Natural Risk Zones	38,2	978	100	36	1	
Population Distribution	17,4	450	37	10	0	
Protected Sites Simple	11,4	220	13	4	1	
Species Distribution	26,9	651	52	12	0	

Conclusions

application schemas complexity results from

- wide thematic range
- maybe ineffective database structure design

testing metrics

- not include e.g.
 - «voidable» (UML), "nilReason" (GML)
 - abstract classes (UML, GML)
 - different geometry types (UML, GML)
 - attribute constraints (UML)
 - relations between application schemas (UML, GML)

Further challenges...

- complexity examination of some samples
 - GML data with concrete objects
- verification of application schemas complexity influence on data quality (including data complexity)
- elaboration of some original complexity metrics
 adjusted to INSPIRE application schemas
- testing of GIS functionality to measure application schemas complexity
 - implementation of own tool alternatively

PhD Agnieszka Chojka agnieszka.chojka@uwm.edu.pl

Department of Land Surveying and Geomatics Faculty of Geodesy, Geospatial and Civil Engineering University of Warmia and Mazury in Olsztyn